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Abstract—The ability to generate network traffic predictions
at short time scales is crucial for many network management
tasks such as traffic engineering, anomaly detection, and traffic
matrix estimation. However, building models that are able to
predict the traffic from modern networks at short time scales
is not a trivial task due to the diversity of the network traffic
sources. In this paper, we present a framework for network-
wide link-level traffic prediction using Long Short-Term Memory
(LSTM) neural networks. Our proposed framework leverages link
statistics that can be easily collected either by the controller of
a Software Defined Network (SDN), or by SNMP measurements
in a legacy network, in order to predict future link throughputs.
We implement several variations of LSTMs and compare their
performance with traditional baseline models. Our evaluation
study using real network traces from a Tier-1 ISP illustrates that
LSTMs can predict link throughputs with very high accuracy
outperforming the baselines for various traffic aggregation levels
and time scales.

I. INTRODUCTION

Link-level network traffic predictions at short time-scales can
provide information that is very crucial for various network
management tasks such as traffic engineering, failure recovery,
anomaly detection, performance diagnostics, load balancing,
and Traffic Matrix (TM) estimation [6], [7], [8], [9], [10],
[11], [12]. For example, in order for the network to react
to a congestion event early on and prevent packet losses
and increased delays, link level predictions can be used and
reroute traffic accordingly without having to wait for the routing
protocols to react with delay [2]. Another example is the use
of predictions as baselines of normal behavior for the near
future, and the treatment of any measured deviations from the
baselines as detected anomalies [23], [22]. Finally, predictions
can be used to substitute traffic measurements whenever the
available resources are limited and network telemetry cannot
be performed deterministically [4].

The prediction models that have been proposed in the rele-
vant literature have been designed for large aggregation time-
windows (i.e. 15 minutes in the vast majority of the cases)
due to the challenges in regards to the very volatile nature of
network traffic in smaller time scales that makes predictions
hard. Another factor that poses significant challenges for the
evaluation of statistical models in smaller time scales is the
lack of structured datasets that the research community can
easily use to better understand the modern network traffic. The
development of Software-defined Networks (SDN) has enabled
easier traffic measurement at short time-scales by leveraging
the capabilities of the OpenFlow enabled switches to provide
a centralized controller with statistics for each forwarding rule

installed, as well as the traffic send/received by each link. This,
makes SDN an ideal solution for bringing more visibility into
the network and provide prediction models with the required
data.

In this paper, we present an analysis of aggregated network
traffic for various aggregation levels and short time scales,
and propose the use of state-of-the-art deep-learning models
for time-series predictions, namely Long Short-Term Memory
(LSTM), in order to generate accurate traffic predictions. Due to
the lack of publicly available structured datasets from both SDN
and legacy networks at these time scales, we use the framework
introduced in [26] that can process and aggregate traditional
packet level logs (i.e. pcap files) at scale, and apply it to a
relatively recent dataset from a Tier-1 ISP provided by CAIDA
in [3].

The contributions of our work are summarized below:
1) We present an in-depth analysis of the capabilities of

LSTMs to model aggregate network traffic at various
traffic aggregation levels and short time scales, which can
enable short-term decision making, unlike the easier to
predict longer time-scales that traditional TM estimation
frameworks are based on.

2) We propose a prediction framework that can be easily
deployed to production SDN topologies without requiring
any switch modifications since it leverages the port statis-
tics that are available through the OpenFlow API in order
to train the LSTM models.

3) We evaluate our framework using real backbone network
traffic that was captured relatively recently (i.e. 2016) and
which contains new traffic dynamics that were unavailable
in relevant studies two or more decades ago, since in the
recent years the multimedia content, the social networks,
the mobile devices, the smart-TVs and more, have com-
pletely changed the traffic landscape.

4) We provide a comparison of several variations of LSTMs
including vanilla LSTM, delta LSTM (which models the
consecutive link throughput deltas), multi-variate LSTM
(which models all the link throughput time series at
once thus taking into account potential correlations), and
compare with three versions of ARIMA-based models that
have been traditionally used for network traffic modeling
[20], [21].

II. BACKGROUND & MOTIVATION

Before presenting our analysis, we introduce the following
definitions that will be used throughout this work.
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Fig. 1: SDN measurement and
prediction architecture.
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(a) CAIDA trace aggregated in 1
second periods.
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trace in Fig. 2(a).
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ange) nodes attached.

Fig. 2: The CAIDA time-series aggregated across all prefixes, its autocorrelation
coefficients, and the topology used to replay the trace.

Definition 1. A flow is a set of IP packets passing an observa-
tion point in the network during a certain time interval which
share a set of common properties such as source and destination
IP address or IP prefix.

Definition 2. A flow-rate time-series, or simply a flow time-
series Fi = f

(1)
i , f

(2)
i , ..., f

(n)
i is an ordered set of n real-valued

variables that correspond to the total traffic volume of flow fi
over a measurement interval.

Since network links act as flow aggregators, we can extend
the above definitions for the cases of directional link through-
puts by summing the time series of the individual network flows
that a link carries according to a routing protocol. For this,
consider a set of flow-rate time-series Fi (potentially mega-
flows) of length n (zero-padding can be used to achieve equal
n across time-series), and a set of N switches that are connected
with L directional links and forward traffic according to a
routing matrix R with elements r(j, i) that represent the fraction
of traffic of flow i that is forwarded through link j (assuming
links have unique identifiers). Then:

Definition 3. A link-throughput time-series for link j, or simply
a link time-series Lj = l

(1)
j , l

(2)
j , ..., l

(n)
j is an ordered set of n

real-valued variables such that:

l
(t)
j =

∑
i∈{1,...,N}

rj,i>0

f
(t)
i , (1)

for t ∈ {1, . . . , n}.

Definition 4. Given a link-throughput time-series Lj of length
n, a link-throughput subsequence L(p)

j of Lj is a sampling of
length w < n of contiguous positions from Lj , that is, L(p)

j =

l
(p−w+1)
j , l

(p−w+2)
j , ..., l

(p)
j for w ≤ p ≤ n.

A link-throughput time-series and all its subsequences can be
easily derived by collecting link-level measurement data using
the port statistics from any OpenFlow-enabled switches. Of
course, in hybrid deployments (i.e. SDN and legacy topologies),
a combination of both OpenFlow and SNMP statistics can be
used in order to build a more complete picture of the network.
In this paper, and without loss of generality, we will be focusing

on the SDN use-case only which can be summarized in the
architecture shown in Fig. 1. As we can see, in order for an
SDN controller to perform a given management task, it retrieves
directional link counters from OpenFlow switches and stores
them to a database in order to calculate the desired subse-
quences that will used by the prediction server. In order for
the SDN controller to calculate the link-throughput time-series,
it collects the cumulative incoming/outgoing traffic counters
of each switch port, and converts them to differentials using
the counters from the previous measurement epoch. Finally,
the layer that stores, analyzes, models, and predicts the traffic
can also be used to enable a knowledge plane, as described
in [14], and can further support network-wide data-driven
decision making. In our modeling study, or when implementing
a prediction server as described above, we use a subsequence
L
(p)
j with p = n/2 and w = n/2 data points for model training,

and a subsequence L(p)
j with p = n and w = n/2 for model

testing. In this paper, n is defined as the full length of the
dataset (described in more detail in Section III), after the traffic
has been grouped in time epochs. In a production deployment,
n can be capped using a rolling time-window (i.e. the last n
samples).

III. AGGREGATED NETWORK TRAFFIC ANALYSIS

One of the biggest challenges in modeling aggregated net-
work traffic is the ever-changing nature of the content genera-
tion and consumption landscape which can make old datasets
obsolete almost every decade. For example, the constant con-
sumption of multimedia content, the frequent web browsing
from mobile devices, the file-sharing applications, are examples
that were barely available more than a decade ago. So, all these
new traffic types and patterns need to a) be better understood,
and b) be modeled accurately using a scalable architecture.

The available traffic matrix datasets also suffer in terms of
the issues described above (i.e. ≥ 15 min time scales from data
collected in 2004 or 2006 [24], [25]). In addition, in such cases,
network traffic exhibits hourly, daily, and weekly periodicities,
and thus makes it easier to predict [2]. In our study, we use
a 1-hour long trace containing large volumes of packet level
traffic from a Tier-1 ISP from [3] which was captured in 2016.
The trace contains 1.65 billion IPv4 packets with total size of



0.98 TB. The aggregated traffic time-series is shown in Fig.
2(a) when aggregated across all flow prefixes with 1 second
aggregation epoch, from where we can see that the traffic is
quite volatile with a visible downward trend that is part of the
daily traffic periodicities, as well as significant autocorrelation
coefficients for various lags, as shown in Fig. 2(b) that motivate
the use of LSTMs for modeling such timeseries [1].

The CAIDA dataset contains traffic collected from the
high-speed ”equinix-chicago” monitor which is located at the
Equinix datacenter in Chicago, IL, and is connected to a
backbone 10GigE link of a Tier1 ISP that connects Chicago,
IL and Seattle, WA. Each direction of the bidirectional link
is monitored and logged separately and labeled as ”direction
A” (Seattle to Chicago) and ”direction B” (Chicago to Seattle).
However, since CAIDA is aware that some data in this dataset
contain more than trivial amounts of packet loss (especially
direction B) due to the way the monitoring equipment is set
up and the high network speeds, in this work we are focusing
only on direction A. The extracted dataset was approximately
120GB in size, and in order to aggregate it in various time scales
and subnet mask sizes, we use a modern big-data processing
framework, namely Google BigQuery [13] similar to [26].

In order to analyze the characteristics of the traffic when
grouped together in network links, we proceed to implement
Google’s B4 backbone topology 1 from [15] and assign the
source and destination prefixes from the CAIDA trace to ingress
and egress routers as shown in Fig. 2(c). Specifically, we group
the source and destination IPs of each micro-flow into one
of the following four aggregation levels, i.e. /8, /10, /12, and
/14 both at the source and the destination IP, and assign these
aggregated prefixes at random to one of the 3 ingress and egress
nodes shown in Fig. 2(c). To calculate the link-throughput
subsequences observed by each link in our topology, we assign
source and destination prefix pairs to links using shortest path
routing from each source to its destination. This way, each link
observes various traffic aggregations simulating a real network
scenario.

IV. METHODOLOGY

A. Long Short-Term Memory Model
A Long-Short-Term-Memory (LSTM) model is a form of

a recurrent neural network that has gained popularity in the
recent years due to its effectiveness in modeling complex time-
series with time lags of unknown size that separate important
events [5], [1]. The main idea of LSTM is the use of self-
loops where the gradient can flow for long durations without
vanishing or exploding. This, in combination with the use of
a forget-gate, allows the LSTM to accumulate knowledge that
can be ”forgotten” later depending on the input data. LSTMs
are characterized by the following recursive equations:

f(t) = σ
(
Wfx(t) + Ufh(t−1) + bf

)
(2)

i(t) = σ
(
Wix(t) + Uih(t−1) + bi

)
(3)

c̃(t) = tanh
(
Wcx(t) + Uch(t−1) + bc

)
(4)

c(t) = i(t) � c̃(t) + f(t) � c(t−1) (5)

o(t) = σ
(
Wox(t) + Uoh(t−1) + bo

)
(6)

h(t) = o(t) � tanh(c(t)) (7)

1We also tried random topologies with very similar results.

where f(t), i(t), c̃(t), c(t), o(t),h(t) are the forget gate, input
gate, candidate state, current state, output gate, and hidden
state, respectively, Wf ,Wi,Wc,Wo are the input weights for
the forget gate, input gate, candidate state gate, and output
gate, respectively, and Uf ,Ui,Uc,Uo are the recurrent weights
for the forget gate, input gate, current state, and output gate,
respectively. In addition, � is the (element-wise) Hadamard
product, and σ is the sigmoid function.

B. Data Transformations
One very common approach when modeling data in practice

is to apply several transformations to the data depending on
their distribution, in order to achieve certain properties. In
this work, we apply the following transformations in various
combinations in order to assess their effectiveness: a) normalize
the time-series, and b) model the deltas (i.e. f (j)i − f

(j−1)
i ,

f
(j−1)
i − f

(j−2)
i , . . .) instead of the actual values. The trans-

formations aim to help the model focus on the relative feature
importance rather than their absolute magnitudes.

C. Error Metric
In order to evaluate the ability of LSTMs to model the net-

work traffic described in Section III, assess their effectiveness
by calculating the Mean Absolute Percentage Error (MAPE),
as defined below:

MAPE =
100

n

n∑
t=1

|f (t)
i − u

(t)
i |

|f (t)
i |

(8)

where f (t)i is the actual flow-rate value and u(t)i the estimated
flow-rate value for a given flow i.

V. EVALUATION

We implemented three variations of LSTM, as well as three
variations of ARIMA baselines [27]. In order to choose the best
performing hyper-parameters, we implemented random search
[30] where random combinations of the model parameter values
are chosen (i.e. look-back window, number of units, number of
layers, dropout ratio, epochs, and batch size) and the one that
performs the best is finally selected. The details of each model
are shown below:

1) Vanilla LSTM (vlstm): This is a simple LSTM archi-
tecture with an LSTM layer with 50 units, followed by
a dense layer with 50 units, dropout of 20%, look back
window 3, 50 training epochs (not to be confused with
the aggregation epoch used during the dataset creation),
batch size 4, and standard scaler on the time-series data.
The model completed its training in less than a minute in
a regular PC, with a 50-50 train/test split. The model was
used to model each link’s traffic separately and calculate
an average of all the MAPE errors across links.

2) Delta LSTM (dlstm): This is exactly the same architec-
ture as in 1) above, with the only difference that the input
data have been pre-processed to calculate the time-series
deltas. The model was used to model each link’s traffic
separately and calculate an average of all the MAPE errors
across links.

3) Multivariate LSTM (mlstm): This is an LSTM architec-
ture that consists of an LSTM layer with 3×(#links) units
(for the last 3 observations of each link), followed by a
dense layer of #links units, dropout of 30%, 50 training
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Fig. 3: Average MAPE for each model across various mask sizes and epoch durations.

epochs, batch size 4, and standard scaler on the time-series
data. This model produces predictions for all the links at
once.

4) ARIMA model (arima): This is an ARIMA model with
p = 3, q = 0, and d = 0 parameters, that was found
to perform well for a variety of traces. The parameter p
corresponds to the number of lag observations included in
the model, d corresponds to the number of times that the
input data are differenced, and q corresponds to the size
of the moving average window.

5) Delta ARIMA model (darima): This is an ARIMA model
with p = 3, q = 0, and d = 1 parameters that implements
differentiation to improve stationarity.

6) First-Order Autoregressive ARIMA (ar1): This is an
ARIMA model with p = 1, q = 0, and d = 0 parameters
that generates predictions based on the last value seen.

We run each model 10 times to calculate the final MAPE
averages. For the models that operate on each link separately,
we calculate the average MAPE across links. All the model
training times range between 5-30 seconds in a server with
32GB of RAM and an Intel CPU with 16 cores. The average
MAPEs for each mode across all epochs are shown in Figs.
3(a), 3(b), 3(c), and 3(d). As we can see from the figures, all
the LSTM models perform much better than the ARIMA ones
in all the scenarios under consideration, which validates our
hypothesis that LSTM is a good candidate for link-level traffic
predictions at time-scales below 30 seconds. The difference
becomes much bigger (i.e. more than 2x) for all time scales in
the case of /14 network assignment due to the more challenging
nature of the resulting aggregation that separated volatile low
rate time series with non volatile high rate ones. The same
pattern but in smaller scale is evident for smaller aggregation
masks (i.e. /8, /10, /12). The time epoch played also an impor-
tant role in the model performances, with larger time epochs
producing better results for all the models, which is expected
due to the reduced variance of the traffic at higher aggregation
scales. Among all the LSTM models, we can observe that
vlstm (per link) performs better overall, followed by vdlstm
and mlstm. The reason for this is due to the fact that vlstm
and vdlstm are optimized for each link separately, whereas the
mlstm underfits when trying to capture the traffic patterns across
the network. Finally, the vdlstm performs relatively similar to
vlstm, especially for higher epoch sizes. In the future, we are
planning to further optimize mlstm and use more data in order
to reduce underfitting. Finally, we can observe that all three

ARIMA models exhibit very similar performance.
Based on the above results, we can conclude that per-link

LSTMs can provide the best results with quick training times
(≤ 30 seconds), and up to 2x reduction in MAPE compared to
ARIMA models.

VI. RELATED WORK

The problem of modeling network flow time-series is not
new in the relevant literature. Most of the previous works
have focused on modeling the aggregate size of a number of
flows over time windows of several minutes [16], [17], [18],
[28], [29]. On the other hand, there have been some efforts
on modeling aggregated flow-sizes in shorter time scales, such
as [19], [20], [21], [28] but none of them provides a generic
and scalable solution for modern networks, since most of the
works rely on traces that are more than 15 years old that differ
significantly from the modern traffic dynamics. From these
works, [28] is the most relevant to our approach. However,
[28] has some major differences as follows: a) it uses the 2004
GEANT/ABILENE datasets (we use the 2016 CAIDA) that
contain 15 minute aggregates which are easier to model and
not suitable for short-term/fast decision making, b) it also uses
a small dataset with 5 second intervals collected from a single
link sending artificial traffic between 2 virtual machines and
which contains only 25K packets (we use 1.65 Billion packets
from real ISP) and thus cannot provide any conclusions about
backbone traffic modeling at short time-scales. In addition to
the above, our previous works in [4], [26] use small time-scale
predictions as in here. However, none of them models network
traffic at the link level, neither they apply multivariate models
as a way to capture network-wide correlations.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented several variations of LSTM
that can effectively model backbone network traffic at the
link level and for various time-epochs and compared with
several ARIMA baseline models. The results obtained look very
promising and validate the hypothesis that LSTM is a good
candidate for link-level network traffic modeling. In the near
future, we are planning to further investigate this possibility by
optimizing more the models used, as well as trying different
data transformations, neural network architectures, and error
metrics.
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