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Abstract—Due to the burstiness of video traffic, video modeling 
is very important in order to evaluate the performance of future 
wired and wireless networks. In this paper, we investigate the 
possibility of modeling H.264 videoconference traffic with well-
known distributions. Our results regarding the behavior of single 
videoconference traces provide significant insight and help to 
build a Discrete Autoregressive (DAR(1)) model to capture the 
behavior of multiplexed H.264 videoconference movies from VBR 
coders.

I. INTRODUCTION 
As traffic from video services is expected to be a substantial 

portion of the traffic carried by emerging wired and wireless 
networks [7][13], statistical source models are needed for 
Variable Bit Rate (VBR) coded video in order to design 
networks which are able to guarantee the strict Quality of 
Service (QoS) requirements of the video traffic. Video packet 
delay requirements are strict, because delays are annoying to a 
viewer; whenever the delay experienced by a video packet 
exceeds the corresponding maximum delay, the packet is 
dropped and the video packet dropping requirements are 
equally strict.  

Hence, the problem of modeling video traffic, in general, 
and videoconferencing, in particular, has been extensively 
studied in the literature. VBR video models which have been 
proposed in the literature include first-order autoregressive 
(AR) models [2], discrete AR (DAR) models [1][3], Markov 
renewal processes (MRP) [4], MRP transform-expand-sample 
(TES) [5], finite-state Markov chain [6][7], Gamma-beta-auto-
regression (GBAR) models [8][9] (which capture data-rate 
dynamics of VBR video conferences well but was found in [9] 
to not be suitable for general MPEG video sources), discrete-
time Semi-Markov Processes (SMP) [10], wavelets [11], 
multifractal and fractal methods [12].  

In [14][15], different approaches are proposed for MPEG-1 
traffic, based on the log-normal, Gamma, and a hybrid 
Gamma/lognormal distribution model, respectively. 

H.264 is the latest video coding standard of the ITU-T 
Video Coding Experts Group (VCEG) and the ISO/IEC 
Moving Picture Experts Group (MPEG). It has recently become 
the most widely accepted video coding standard since the 
deployment of MPEG2 at the dawn of digital television, and it 
may soon overtake MPEG2 in common use. It covers all 

common video applications ranging from mobile services and 
videoconferencing to IPTV, HDTV, and HD video storage [18].  

Standard H.264 encoders generate three types of video 
frames: I (intracoded), P (predictive) and B (bidirectionally 
predictive); i.e., while I frames are intra-coded, the generation 
of P and B frames involves, in addition to intra-coding, the use 
of motion prediction and interpolation techniques. I frames are, 
on average, the largest in size, followed by P and then by B 
frames. 

Similarly to our recent work on modeling H.263 
videoconference traffic [17], our present work initially focuses 
on the accurate fitting of the marginal (stationary) distribution 
of video frame sizes of single H.264 video traces. More 
specifically, our work follows the steps of the work presented in 
[3], where Heyman et al. analyzed three videoconference 
sequences coded with a modified version of the H.261 video 
coding standard and two other coding schemes, similar to the 
H.261. The authors in [3] found that the marginal distributions 
for all the sequences could be described by a gamma (or 
equivalently negative binomial) distribution and used this result 
to build a Discrete Autoregressive (DAR) model of order one, 
which works well when several sources are multiplexed. 

An important feature of common H.264 encoders is the 
manner in which frame types are generated. Typical encoders 
use a fixed Group-of-Pictures (GOP) pattern when compressing 
a video sequence; the GOP pattern specifies the number and 
temporal order of P and B frames between two successive I 
frames. A GOP pattern is defined by the distance N between I 
frames and the distance M between P frames.  

In this work, we focus on the problem of modeling 
videoconference traffic from H.264 encoders, which is a 
relatively new and yet open issue in the relevant literature.  

II. SINGLE-SOURCE H.264 TRAFFIC MODELING

A.  Frame-size histograms 
In our work, we have studied two different long sequences 

of H.264 VBR encoded videos in eighteen formats, from the 
publicly available Video Trace Library of [19]. The selected 
videos are of low or moderate motion (i.e., traces with very 
similar characteristics to the ones of actual videoconference 
traffic), in order to derive a statistical model which fits well the 
real data.  
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The two traces are, respectively: 

1) A demo from the Sony Digital Video Camera 
2) An excerpt of NBC News 

The length of the videos is 10 and 30 minutes, respectively. 
The data for each trace consists of a sequence of the number of 
cells per video frame and the type of video frame, i.e., I, P, or 
B. Without loss of generality, we use 48-byte packets 
throughout this work, but our modeling mechanism can be used 
equally well with packets of other sizes. Table I presents the 
trace statistics for each trace. The interframe period is 33.3 ms. 

We have investigated the possibility of modeling the 
eighteen traces with quite a few well-known distributions and 
our results show that the best fit among these distributions is 
achieved for all the traces studied with the use of the Pearson 
type V distribution. The Pearson type V distribution (also 
known as the “inverted Gamma” distribution) is generally used 
to model the time required to perform some tasks (e.g., 
customer service time in a bank); other distributions which 
have the same general use are the exponential, gamma, weibull 
and lognormal distributions [20]. Since all of these distributions 
have been often used for video traffic modeling in the literature, 
they have been included in this work as fitting candidates, in 
order to compare their modeling results in the case of H.264 
videoconferencing. 

The frame-size histogram based on the complete VBR 
streams is shown, for all four sequences, to have the general 
shape of a Pearson type V distribution. Fig. 1 presents 
indicatively the histogram for the NBC News ([CIF, G16, B7, 
F28]) sequence. 

B. Statistical Tests and Autocorrelations 
Our statistical tests were made with the use of Q-Q plots 

[3][20], Kolmogorov-Smirnov [20] tests and Kullback-Leibler 
divergence tests [21]. The Q-Q plot is a powerful goodness-of-
fit test, which graphically compares two data sets in order to 
determine whether the data sets come from populations with a 
common distribution (if they do, the points of the plot should 

fall approximately along a 45-degree reference line). More 
specifically, a Q-Q plot is a plot of the quantiles of the data 
versus the quantiles of the fitted distribution (a z-quantile of X 
is any value x such that P ((X  x) = z). The Kolmogorov–
Smirnov test (KS-test) tries to determine if two datasets differ 
significantly. The KS-test has the advantage of making no 
assumption about the distribution of data, i.e., it is non-
parametric and distribution free. The KS-test uses the 
maximum vertical deviation between the two curves as its 
statistic D. The Kullback-Leibler divergence test (KL-test) is a 
measure of the difference between two probability distributions.  

The Pearson V distribution fit was shown to be the best in 
comparison to the gamma, weibull, lognormal and exponential 
distributions, which are presented here (comparisons were also 
made with the negative binomial and Pareto distributions, 
which were also worse fits than the Pearson V). However, as 
already mentioned, although the Pearson V was shown to be the 
better fit among all distributions, the fit is not perfectly 
accurate. This was expected, as the gross differences in the 
number of bits required to represent I, P and B frames impose a 
degree of periodicity on H.264-encoded streams, based on the 
cyclic GoP formats (therefore, this case is different than the 
case of H.263 traffic we studied in [17], where the number of I 
frames was so small in each trace that the trace could be 
modeled as a whole).

Hence, we proceeded to study the frame size distribution for 
each of the three different video frame types (I, P, B), in the 
same way we studied the frame size distribution for the whole 
trace. This approach was also used in [9][22]. 

TABLE I. TRACE STATISTICS

Video Name [RES, G, B, F]a Mean 
(bits) 

Peak 
(bits) 

Variance 
 (bits2)

NBC News [CIF, 16, 1, 28] 15816 181096 471117539 
NBC News [CIF, 16, 1, 48] 1197 28032 4925112 
NBC News [CIF, 16, 3, 28] 14632 182520 467920380 
NBC News [CIF, 16, 3, 48] 1084 28216 5007541 
NBC News [CIF, 16, 7, 28] 15081 186872 467131784 
NBC News [CIF, 16, 7, 48] 1054 29768 5179470 
NBC News [CIF, 16, 15, 28] 16624 192272 456464433 
NBC News [CIF, 16, 15, 48] 1059 31840 5246908 
Sony Demo [CIF, 16, 1, 28] 14067 221664 752947478 
Sony Demo [CIF, 16, 1, 48] 954 23096 4693753 
Sony Demo [CIF, 16, 3, 28] 12801 222888 770225078 
Sony Demo [CIF, 16, 3, 48] 887 23232 4856589 
Sony Demo [CIF, 16, 7, 28] 13129 227680 787021301 
Sony Demo [CIF, 16, 7, 48] 898 25480 5243752 
Sony Demo [CIF, 16, 15b, 28] 14861 233296 803054805 
Sony Demo [CIF, 16, 15b, 48] 933 28224 5818976 
Sony Demo [HD, 12, 2, 48] 22513 398544 2684852964 
Sony Demo [HD, 12, 2, 38] 7618 143408 327728805 

a. RES: Resolution, G: GoP Size, B: Number of B Frames, F: Quantization Parameters

b. When B=15 and G=16 there are no P frames in the trace sequence
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Figure 1.  Frame size histogram for the NBC News trace with parameters:
[CIF, G16, B7, F28].  
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Another approach, similar to the above, was proposed in 
[14]. This scheme uses again lognormal distributions and 
assumes that the change of a scene alters the average size of I 
frames, but not the sizes of P and B frames. However, it is 
shown in [4][15] that the average sizes of P and B frames can 
vary by 20% and 30% (often more than that), respectively, in 
subsequent scenes, therefore the size changes are statistically 
significant.  

The mean, peak and variance of the video frame sizes for 
each video frame type (I, P and B) of each movie were taken 
again from [19] and the Pearson type V parameters are 
calculated based on the following formulas for the mean and 
variance of Pearson V (the parameters for the other fitting 
distributions are similarly obtained based on their respective 
formulas).  

The Probability Density Function (PDF) of a Pearson V 
distribution with parameters ( , ) is f(x)= [x-( +1) e- /x ]/ [ -

( )], for all x>0, and zero otherwise. 

The mean and variance are given by the following 
equations: Mean= /( -1), Variance= 2/[( -1)2( -2)]      

The autocorrelation coefficient of lag-1 was also calculated 
for all types of video frames of the eighteen movies, as it shows 
the very high degree of correlation between successive frames 
of the same type. The autocorrelation coefficient of lag-1 will 
be used in the following Sections of this work, in order to build 
a Discrete Autoregressive Model for each video frame type. 

From the five distributions examined (Pearson V, 
exponential, gamma, lognormal, weibull) the Pearson V 
distribution once again provided the best fitting results for the 
54 cases (18 movies, 3 types of frames per movie) studied. 

In order to further verify the validity of our results, we 
performed Kolmogorov-Smirnov and Kullback-Leibler tests for 
all the 54 fitting attempts. The results of our tests confirm our 
respective conclusions based on the Q-Q plots (i.e., the Pearson 
V distribution is the best fit). Fig. 2 presents indicative results 
from the KS-test. Regarding the KL-test, the results for the {I, 
P, B} frames of the Sony Demo ([CIF, G16, B3, F48]) trace are 
respectively, for the Pearson V distribution {0.364, 0.721, 
0.432), for the Lognormal distribution {0.378, 0.864, 0.479}, 
for the Gamma distribution {0.387, 1.027, 0.543} and for the 
Weibull distribution {0.453, 1.024, 0.533}.   

Although controversy persists regarding the prevalence of 
Long Range Dependence (LRD) in VBR video traffic 
([25][26][27]), in the specific case of H.264-encoded video, we 
have found that LRD is important. The autocorrelation function 
for the NBC News ([CIF, G16, B7, F28]) trace is shown in Fig. 
3 (the respective Figures for the other three traces are similar). 
Three apparent periodic components are observed, one 
containing lags with low autocorrelation, one with medium 
autocorrelation and the other lags with high autocorrelation. We 
observe that autocorrelation remains high even for large 
numbers of lags and that both components decay very slowly; 
both these facts are a clear indication of the importance of 
LRD. The existence of strong autocorrelation coefficients is due 
to the periodic recurrence of I, B and P frames.

Although the fitting results when modeling each video 
frame type separately with the use of the Pearson V distribution 
are clearly better than the results produced by modeling the 
whole sequence uniformly, the high autocorrelation shown in 
the Figure above can never be perfectly “captured” by a 
distribution generating frame sizes independently, according to 
a declared mean and standard deviation, and therefore none of 
the fitting attempts (including the Pearson V), as good as they 
might be, can achieve perfect accuracy. However, these results 
lead us to extend our work in order to build a DAR model, 
which inherently uses the autocorrelation coefficient of lag-1 in 
its estimation. The model will be shown to accurately capture 
the behavior of multiplexed H.264 videoconference movies, by 
generating frame sizes independently for I, P and B frames. 

Finally, it should be noted that in [16] we have successfully 
modeled High Definition (HD) H.264 traces as a whole (i.e., 
with a similar approach to that of [17] for H.263 traces) and 
used the result to propose an efficient MAC protocol for GEO 
satellite networks. The Weibull distribution was shown to 
provide the best results when modeling the traces as a whole, 
slightly outperforming the Pearson V distribution. However, in 
the case of the “Main Profile” traces from [19] (which consume 
significantly smaller amounts of bandwidth than the HD ones) 
the Pearson V distribution clearly excels as a fit both for the 
whole trace and for the separate modeling of I, P, B frames. 
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G16, B7, F28]). 
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III. THE DAR (1) MODEL – RESULTS AND DISCUSSION

A Discrete Autoregressive model of order p, denoted as 
DAR(p) [23], generates a stationary sequence of discrete 
random variables with an arbitrary probability distribution and 
with an autocorrelation structure similar to that of an 
Autoregressive model. DAR(1) is a special case of a DAR(p) 
process and it is defined as follows: let {Vn} and {Yn} be two 
sequences of independent random variables. The random 
variable Vn can take two values, 0 and 1, with probabilities 1-
and , respectively. The random variable Yn has a discrete state 
space S and P{Yn = i} = (i). The sequence of random variables 
{Xn} which is formed according to the linear model:  

 Xn = Vn Xn-1 + (1- Vn) Yn (1) 

is a DAR(1) process. 

A DAR(1) process is a Markov chain with discrete state 
space S and a transition matrix: 

 P = I + (1- ) Q (2) 

where  is the autocorrelation coefficient, I is the identity 
matrix and Q is a matrix with Qij = (j) for i, j S.  

Autocorrelations are usually plotted for a range W of lags. 
The autocorrelation can be calculated by the formula: 

(W)= E[(Xi - )(Xi+w - )]/ 2 (3) 

where  is the mean and 2 the variance of the frame size for a 
specific video trace. 

As in [3], where a DAR(1) model with negative binomial 
distribution was used to model the number of cells per frame of 
VBR teleconferencing video, we want to build a model based 
only on parameters which are either known at call set-up time 
or can be measured without introducing much complexity in the 
network. DAR(1) provides an easy and practical method to 
compute the transition matrix and gives us a model based only 
on four physically meaningful parameters, i.e., the mean, peak, 
variance and the lag-1 autocorrelation coefficient  of the 
offered traffic (these correlations, as already explained, are 
typically very high for videoconference sources). The DAR(1) 
model can be used with any marginal distribution [24]. 

As already explained, the lag-1 autocorrelation coefficient 
for the I, P and B frames of each trace is very high in all the 
studied cases. Therefore, we proceeded to build a DAR(1) 
model for each video frame type for each one of the eighteen 
traces under study. More specifically, in our model the rows of 
the Q matrix consist of the Pearson type V probabilities (f0, f1,
… fk, FK), where FK= k>K fk, and K is the peak rate. Each k, for 
k<K, corresponds to possible source rates less than the peak 
rate of K.  

From the transition matrix in (2) it is evident that if the 
current frame has, for example, i cells, then the next frame will 
have i cells with probability +(1- )*fi, and will have k cells, 
k ≠ i, with probability (1- )*fk. Therefore the number of cells 
per video frame stays constant from one (I, P or B) video frame 
to the next (I, P or B) video frame, respectively, in our model 

with a probability slightly larger than . This is evident in Fig. 
4, where we compare the actual B frames sequence of the NBC 
News ([CIF, G16, B15, F28]) trace and their respective DAR(1) 
model and it is shown that the DAR(1) model’s data produce a 
“pseudo-trace” with a periodically constant number of cells for 
a number of video frames. This causes a significant difference 
when comparing a segment of the sequence of I, P, or B frames 
of the actual NBC News video trace and a sequence of the same 
length produced by our DAR(1) model. The same vast 
differences also appeared when we plotted the DAR(1) models 
versus the actual I, P and B video frames of the other traces 
under study.
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Figure 4. Comparison for a single trace between a 10000 frame sequence of
the actual B frames sequence of the NBC News ([CIF, G16, B15, F28]) trace
and the respective DAR(1) model in number of cells/frame (Y-axis). 
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Figure 5. Comparison for 30 superposed sources between a 3000 I frame
sequence of the actual NBC News ([CIF, G16, B1, F28)] trace and the
respective DAR(1) model in number of cells/frame (Y-axis). 

0
500

1000
1500
2000
2500
3000
3500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Frames

C
el

ls
   

Actual Trace DAR Model

Figure 6. Comparison for 30 superposed sources between a 10000 P frame
sequence of the actual NBC News ([CIF, G16, B1, F28)] trace and the
respective DAR(1) model in number of cells/frame (Y-axis). 
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Figure 7. Comparison for 30 superposed sources between a 10000 B frame
sequence of the actual NBC News ([CIF, G16, B1, F28)] trace and the
respective DAR(1) model in number of cells/frame (Y-axis). 
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However, our results have shown that the differences 
presented above become small for all types of video frames and 
for all the examined traces for a superposition of 5 or more 
sources, and are almost completely smoothed out in most cases, 
as the number of sources increases (the authors in [3] have 
reached similar conclusions for their own DAR(1) model and 
they present results for a superposition of 20 traces). This is 
clear in Figs. 5-7, which present the comparison between our 
DAR(1) model and the actual I, P, B frames’ sequences of the 
NBC News ([CIF, G16, B1, F28)] , for a superposition of 30 
traces (the results were perfectly similar for all video frame 
types of the other three traces; we have used the initial trace 
sequences to generate traffic for 30 sources, by using different 
starting points in the trace). The common property of all these 
results (derived by using a queue to model multiplexing and 
processing frames in a FIFO manner) is that the DAR(1) model 
seems to provide very accurate fitting results for P and B 
frames, and relatively accurate for I frames.  

However, although Figs. 5-7 suggest that the DAR(1) 
model captures very well the behavior of the multiplexed actual 
traces, they do not suffice as a result. Therefore, we proceeded 
again with testing our model statistically in order to study 
whether it produces a good fit for the I, P, B frames for the 
trace superposition. For this reason we have used again Q-Q 
plots, and we present indicatively some of these results in Figs. 
8-9, where we have plotted the 0.01-, 0.02-, 0.03-,… quantiles 
of the actual B and I video frames’ types of the NBC News 
trace versus the respective quantiles of the respective DAR(1) 
models, for a superposition of 30 traces. 

As shown in Fig. 8, which presents the comparison of actual 
P frames with the respective DAR(1) models for the NBC 
News ([CIF, G16, B3, F48]) trace, the points of the Q-Q plot 
fall almost completely along the 45-degree reference line, with 
the exception of the first and last 3% quantiles (left- and right-
hand tail), for which the DAR(1) model underestimates the 
probability of frames with a very small and very large, 
respectively, number of cells. The very good fit shows that the 
superposition of the P frames of the actual traces can be 
modeled very well by a respective superposition of data 
produced by the DAR(1) model (similar results were derived 
for the superposition of B frames), as it was suggested in Figs. 
6, 7. Fig. 9 presents the comparison of actual I frames with the 
respective DAR(1) model, for the NBC News ([CIF, G16, B7, 
F48]) trace. Again, the result suggested from Fig. 5, i.e., that 
our method for modeling I frames of multiplexed H.264 
videoconference streams provides only relative accuracy, is 
shown to be valid with the use of the Q-Q plots. The results for 
all the other cases which are not presented in Figs. 8-9 are 
similar in nature to the ones shown in the Figures.

One problem which could arise with the use of DAR(1) 
models is that such models take into account only short range 
dependence, while, as shown earlier, H.264 videoconference 
streams show LRD. This problem is overcome by our choice of 
modeling I, P and B frames separately. This is shown in Fig. 
10. It is clear from the Figure that, even for a small number of 
lags, (e.g., larger than 10) the autocorrelation of the 
superposition of frames decreases quickly, for all the traces. 
Therefore, although in some cases the DAR(1) model exhibits a 
slower decrease than that of the actual traces’ video frames 

sequence, this has minimal impact on the fitting quality of the 
DAR(1) model. This result further supports our choice of using 
a first-order model. 

IV. CONCLUSIONS

In this paper, we have proposed and tested a new model for 
traffic originating from VBR H.264 videoconferencing 
sources. Models of video traffic will prove very important in 
the immediate future, as networks will need to competently 
handle video traffic (i.e., to guarantee its strict QoS 
requirements despite its burstiness). The Discrete 
Autoregressive model built in this work is shown to be highly 
accurate and, to the best of our knowledge, is one of the first 
works in the relevant literature to address the specific problem. 
Based on the very good results of our study in modeling P- and 
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Figure 8. Q-Q plot of the DAR(1) model versus the actual video for the P 
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B-frames’ sizes of multiplexed H.264 videoconference traces, 
and the low complexity of our first-order model, we believe 
that our approach is very promising for modeling this type of 
traffic. However, since our modeling scheme shows relative 
accuracy in modeling I -frames’ sizes, the use of wavelet 
modeling for the I -frames’ size sequence may provide a very 
competent solution, and our future work will be pointed 
towards this direction. 
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